Thursday, Apr 18th

Last update08:30:58 AM GMT

GPS инженерам газы Топливо для газобалонных автомобилей

Топливо для газобалонных автомобилей

( 3 Votes )

Возможные заменители бензина. Альтернативные заменители бензина могут быть естественного или искусственного происхождения. При нормальных условиях они могут находиться в жидком (метанол, этанол) или газообразном (метан, пропан, бутан, канализационный, коксовый, доменный и генераторный газы, водород) состояниях.

Все виды топлива имеют различную теплотворную способность, по-разному воздействуют на организм человека и соприкасающиеся материалы. Они могут являться и добавками к нефтяному моторному топливу. Преимущественное применение в качестве моторного топлива на автомобильном транспорте сжиженного нефтяного газа (ГСН) и сжатого природного газа (ГСП) обусловлено тем, что они имеют физико-химические свойства, близкие к бензину. Это в свою очередь требует незначительного изменения конструкции двигателя и позволяет равнозначно работать на двух видах топлива.

Углеводороды, входящие в состав ГСН, при нормальных условиях находятся в газообразном состоянии, но даже при незначительном увеличении давления меняют свое агрегатное состояние и превращаются в жидкость. Хранится ГСН на автомобиле в баллонах в жидком состоянии.

Углеводороды, входящие в состав ГСП, при нормальных условиях находятся в газообразном состоянии и не меняют своего агрегатного состояния даже при значительном изменении давления. Хранится ГСП на автомобиле в баллонах в газообразном состоянии под давлением 20 МПа. Проводятся работы по использованию ГСП, который хранится в специальном изотермическом сосуде при температуре -161°С и давлении 0,35 МПа. Преимущество в его применении заключается в значительном увеличении пробега автомобиля при одинаковой массе системы хранения газа. Недостатки — сложность и ненадежность изотермического сосуда, подвергающегося при эксплуатации автомобиля большим ударным нагрузкам.

Упрощенная схема получения ГСН на АГФУ

Рис. 1. Упрощенная схема получения ГСН на АГФУ

Производство ГСН. Основными составляющими ГСН являются пропан (С3Н8) и бутан (С4Н10). Сжиженный нефтяной газ могут вырабатывать как из нефти, так и из конденсатной фракции природного газа. Существуют различные способы получения ГСН на нефтеперерабатывающих заводах (рис. 1). Образующаяся в процессе переработки нефти смесь углеводородов С1…С6 поступает на абсорбционно-газофракционирующую установку (АГФУ), где в специальных колоннах происходит их разделение на отдельные фракции. Пропан и бутан очищаются от сернистых соединений, щелочи, воды и других компонентов. В дальнейшем они могут поступать на химическую переработку или использоваться в качестве моторного топлива. В зависимости от марки ГСН, пропан и бутан смешиваются в необходимых соотношениях.

Физико-химические свойства ГСН. Существует две марки ГСН: ПА — пропан автомобильный и ПБА — пропан-бутан автомобильный (табл. 1, 2).

Таблица 1. Физико-химические показателии сжиженного газа

Показатель Марка ГСН
ПА ПБА
Массовая доля компонентов, %:
метан и этан Не нормируется
пропан 90+10 50+10
углеводороды С4 и выше Не нормируется
непредельные углеводороды, (не более) 6 6
Объем жидкого остатка при +40°С, % Отсутствует
Давление насыщенных паров, МПа:
при +45°С, (не более) - 1,6
при -20°С, (не менее) - 0,07
при -35°С, (не менее) 0,07 -
Массовая доля серы и сернистых соединений, %, не более 0,01 0,01
В том числе сероводорода, %, не более 0,003 0,003
Содержание свободной воды и щелочи Отсутствует

Таблица 2. Физико-химические свойства составляющих сжиженного газа и бензина

Показатель Пропан Бутан
(нормальный)
Бензин
Молекулярная масса 44,10 58,12 114,20
Плотность жидкой фазы, кг/м3, при температуре кипения и давлении 760 мм.рт.ст. 510 580 720
Плотность газовой фазы, кг/м3:
при нормальных условиях 2,019 2,703 -
при температуре 15°С 1,9 2,55 -
Теплота испарения, кДж/кг 484,5 395,0 397,5
Теплота сгорания низшая:
в жидком состоянии, кДж/л 65608 26417,6 62696
в газообразном состоянии, кДж/кг 45852,6 45431 48680
в газообразном состоянии, кДж/м3 85627,3 111593,5 213180
Октановое число 120 93 72-98
Пределы воспламеняемости в смеси с воздухом при нормальных условиях, % 2,1-9,5 1,5-8,5 1,0-6,0
Температура самовоспламенения, °С 466 405 255-370
Теоретически необходимое для сгорания 1 м3 газа количество воздуха, м3 23,80 30.94 14,70
Коэффициент объемного расширения жидкой фракции, % на 1°С 0,003 0,002 -
Точка кипения при давлении 101,4 кПа, °С -42,1 -0,5 27

Марка газа ПБА допускается к применению во всех климатических районах при температуре окружающего воздуха не ниже -20°С. Марка ПА используется в зимний период в тех климатических районах, где температура воздуха опускается ниже -20°С (рекомендуемый интервал -20°С…-25°С). В весенний период времени с целью полной выработки запасов сжиженного газа марки ПА допускается ее применение при температуре до 10°С. Более высокая температура может привести к нежелательному повышению давления в газоподающей системе автомобиля и ее разгерметизации.

Давление в баллоне. В закрытом сосуде ГСН образует двухфазную систему, состоящую из жидкой и паровой фаз. Давление в баллоне зависит от давления насыщенных паров, которое в свою очередь зависит от температуры жидкой фазы и процентного соотношения пропана и бутана в ней (рис. 2).

Изменение давления насыщенных паров
Рис. 2. Изменение давления насыщенных паров: 1 — 100%-ного бутана; 2 — 50%-ного пропана и 50%-ного бутана; 3 — 100%-ного пропана

Давлением насыщенных паров называют давление паров в закрытом объеме в присутствии жидкой фазы. Давление насыщенных паров характеризует испаряемость ГСН. Испаряемость пропана выше чем бутана, поэтому и давление при отрицательных температурах у него значительно выше.

Расчетами и экспериментами установлено (см. рис. 2):
при низких температурах окружающего воздуха эффективнее использовать ГСН с повышенным содержанием пропана, так как при этом обеспечивается надежное испарение газа, а следовательно и холодный запуск двигателя. Кроме того, достаточное избыточное давление в баллоне обеспечит надежную подачу газа в двигатель (ГСН марки ПА);
при высоких положительных температурах окружающего воздуха эффективнее использовать ГСН с меньшим содержанием пропана, так как при этом в баллоне и трубопроводах будет создаваться значительное избыточное давление, что может повлиять на герметичность газовой системы (ГСН марки ПБА).

Кроме пропана и бутана, в состав ГСН входит незначительное количество метана, этана и других углеводородов, которые могут изменять свойства ГСН. В процессе работы двигателя может образовываться неиспаряемый конденсат, который отрицательно сказывается на работе газовой аппаратуры. Этан обладает повышенным, по сравнению с пропаном, давлением насыщенных паров, что оказывает положительное влияние на поддержание давления в баллоне при отрицательных температурах и может оказать отрицательное влияние при положительных температурах.

Изменение объема жидкой фазы при нагревании. Правилами №67 БЭК ООН (Европейской Экономической Комиссии Организации Объединенных Наций) предусмотрена установка автоматического устройства, ограничивающего наполнение баллона до 80% его емкости. Данное требование объясняется большим коэффициентом объемного расширения жидкой фазы, который для пропана составляет 0,003, а для бутана 0,002 на 1°С повышения температуры газа. Для сравнения: коэффициент объемного расширения пропана в 15 раз, а бутана в 10 раз, больше, чем у воды.

Изменение объема газа при испарении. Для определения изменения объема газа при испарении проанализируем плотность пропана в жидком и газообразном состоянии. Из анализа следует, что при испарении 1 л сжиженного газа образуется окало 250 газообразного. Таким образом, даже незначительная утечка ГСН может быть очень опасной, так как объем газа при испарении увеличивается в 250 раз.

Плотность газовой фазы в 1,5-2,0 раза больше плотности воздуха. Этим объясняется тот факт, что при утечках газ с трудом рассеивается в воздухе, особенно в закрытом помещении. Пары его могут накапливаться в естественных и искусственных углублениях, образуя взрывоопасную смесь.

Образование газового конденсата. При эксплуатации автомобилей на ГСН во второй ступени редуктора скапливается значительное количество трудноиспаряющегося маслянистого конденсата.

Его образование связано с тем, что при испарении ГСН тяжелые неиспаряемые углеводороды находятся во взвешенном состоянии, а при резком уменьшении давления, скорости и изменении направления движения они выпадают в осадок и скапливаются в нижней части второй ступени редуктора-испарителя. Автомобильный газ не предусматривает наличие жидкого осадка при температуре +40°С.

Количество конденсата в редукторе зависит от режима работы двигателя. При работе двигателя на режиме холостого хода и малых нагрузках конденсата выпадает больше, так как скорости газа в редукторе минимальные. При работе двигателя на больших нагрузках тяжелые углеводороды не осаждаются в редукторе, а попадают непосредственнЬ в двигатель.

Температура подогрева газа в испарителе практически не влияет на количество конденсата, выпадающего во второй ступени редуктора.

Наличие конденсата в редукторе способствует быстрому старению мембранного полотна (особенно в нижней части, где скапливается конденсат). Значительное его количество изменяет регулировку редуктора, увеличивает токсичность отработавших газов и ухудшает стабильность работы двигателя. Конденсат обладает неприятным запахом, так как в нем скапливается значительное количество одоранта (специальной добавки, позволяющей обнаружить присутствие газа). Для слива конденсата во второй ступени редуктора предусмотрен краник.

Вязкость конденсата в значительной мере зависит от его температуры:
При температуре 100°С — 7,6 сСт
При температуре 50°С — 27.0 сСт
При температуре 20°С — 131,0 сСт
Поэтому слив конденсата следует производить при прогретом разовом редукторе.

Одорация ГСН. Одорация газа применяется для определения возможных его утечек органами обоняния человека. При массовой доле меркаптановой серы менее 0,001% ГСН должны быть одорированы. Для одорации применяется этилмеркаптан (С2Н5SH), представляющий собой неприятно пахнущую жидкость плотностью 0,839 кг/л и с точкой кипения 35°С. Порог чувствительности запаха 0,00019 мг/л, предельно допустимая концентрация в воздухе рабочей зоны 1 мг/м3.

Во время эксплуатации автомобиля одорант может накапливаться в топливоподающей аппаратуре, выпускном тракте автомобиля, на открытых поверхностях деталей. Выделение одоранта может происходить даже при полностью герметичной газовой системе питания при заправке автомобиля, сливе конденсата из редуктора и, главным образом, с отработавшими газами. Попадание одоранта в салон автомобиля происходит из атмосферы на стоянках через открытые окна и двери, что может вызывать ухудшение состояния человека. Сернистые соединения одоранта и самого газа снижают долговечность работы редуктора вследствие интенсивного старения мембран, резиновых уплотнений и вызывают коррозию трубопроводов.

Запах одоранта из выхлопной трубы особенно сильно ощущается при повышенной токсичности отработавших газов двигателя. В случае, когда их токсичность в норме или несколько ниже нормы, запах одоранта практически не ощущается и его накопления в салоне автомобиля не происходит.

Источник www.blackandw.chat.ru